If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k=-3k^2+17
We move all terms to the left:
k^2-2k-(-3k^2+17)=0
We get rid of parentheses
k^2+3k^2-2k-17=0
We add all the numbers together, and all the variables
4k^2-2k-17=0
a = 4; b = -2; c = -17;
Δ = b2-4ac
Δ = -22-4·4·(-17)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{69}}{2*4}=\frac{2-2\sqrt{69}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{69}}{2*4}=\frac{2+2\sqrt{69}}{8} $
| 7x+1=9x-5=180 | | −17+b8=13 | | w/3+2=9 | | x(0.8)=15 | | 42=-4+2y^2 | | 42=-4+2y^2 | | 42=-4+2y*2 | | e=90 | | e=90 | | 48=3(p-53) | | 7x+2/3=1/3 | | 135=7x-4+(180-12x+11) | | 135=7x-4+180-(12x+11) | | 135=7x-4+180-12x=11 | | 135=7x-4+(180-12x=11) | | -4+7=10u+37 | | 2x-1=6x-13 | | 3(x-3)=−8(2x−3) | | 6r—5=65 | | 6r—5=65 | | 6s+19=85 | | 6s+19=85 | | 17=w/2+14 | | X+4/12=7/6+x-8/5 | | -1/2x+2=7 | | -1/2x+2=7 | | 8x+18=(4x+9 | | 9=2/3nn=12 | | 2x=x^2+90 | | 10+10=50+5x | | (k1+1)(2k+1)=15 | | (k1+1)(2k+1)=15 |